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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECIIVICAL NOGE NO. 134k

CRITICAL STRESS OF THIN-WALLED CYLINDERS IN TORSION

By S. B. Batdorf, Manusl Stein, and Murry Schildcrout
SUMMARY

A theoreticel solution is given for the critical stress of
thin-weclled cylinders loeded in torsion. The results are presented
in terms of a few simple forrulaes end curves which are applicable
to a wide range of cylinder dimensions from very short cylinders of
large radius to long cylinders of small redius. Theoretical
results are found to be in somewhat better agreement with experi-—
mental results than previous theoretical work for the same range
of cylinder dimensions.

%

INTRODUCTION

] For most practical purposes the solution to the problem of
the buckling of cylinders in torsion was given by Donnell in ean
important contribution to shell theory published in 1933 (reference 1).
The present paper, which gives a solution to the seme problem,
hasg two main obJjectives: firet, to present a theoretical solution
of somewhet improved aceuracy; second, to help complete a series
of papers treating the buckling strength of curved sheet from a
unified viewpoint based on & method of analysis ebdsentislly
equivalent to that of Donnell but considerably simpler. (See,
for exemple, reoferences 2 and 3.)

The method of solution in the present paper is that developed
in reference 3. The steps in the theoreticel computations of the
criticel stress ere contained in the appendix. The results are
given in the form of nondimensional curves and simple approximate
formulas which follow these curves closely in the usual rangs of
cylinder dimensions.
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'SYMBOLS

integers
erbitrary constant .

redius of cylinder

_:thiékness of cylinder wall

axial component of displacement; positive in x-direction

circumferential component of dlsplacement; positive in
y-direction '

radial component of displacement; pesitive outward .
exial coordinate of cylinder

clrcunferential coordinate of cylinder. k ,
- 3 . AN -,
flexurel stiffness of plate per unit length I '
: 12(1 = p2)

Young's modulus

length of cylinder

mathemetical operator defined in appendix

. , 5
curvature paremeter L—!/l - u® or <L> L1 - e :
_ rt r/ t

coefficients of deflection functions
critical shesr—stress coefficient appeering in

2
formulae Tgp = kg EED
LTt

I (2 + p2)2 4 : 127254 - ] ;

nt(n2 + g2)2

deflection functions defined Iin appendix _ o
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=L
B A
Py half wave length of buckles in circumferential directlon
o Poisson's ratio
Top _ critical sghear stress
Vh = 2! 2 ah + ah
o a2 o2 oyt
v* . inverse of ¥, defined by VAR
'RESULTS AND DISCUSSION ‘

The critical sghear stresses for cylindefs ars obtained from
the equation

n°D
cr < Lb
124

T

The values of Iy for cylinders with either simply supported or
clamped odges are given in the form of logaritimic plota in
figure 1. The ordinate in this figure is the critical shear-

stress coefficient kg The ebscisesa is a curvature parameter Z
which is glven directly by the theory and involves the dimensions
of the cylinder end Poisson 8 ratio

For very shcrt cylinders the value of the shoar-stress coef-
ficient approaches the values for flat plates, 5.34 when the edges
are simply supported and $.93 when the edges are clamped. As 2
. increases kg also increéases and the curves which defined lig
are glven approximateLy by straight 1ines. Tor simle supﬁorted
c¢ylinders,

K, = 0.85 23/

For cylinders'with clampad cdges,

kg = 0.93 2304
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The range of validity of these formulas is approximately
100< 2 <10 & |
$2

For the case of long cylinders the curves of figure 1 split
into a series of curves depending uron the radius—thickness ratio.
These chrves, which correspond to buckling of the cylinder into
two circumferential waves (n = 2), depart from the straight lines

at approximstely Z = 1oI§ or approximately %-: 3dﬁ% . Because
’ t

~ the critical shear stress of a long cylinder is almost
indépendent of end conditions, the curves for different values

of r/t apply both to cylinders with simply supported edges and

to cylinders with clamped edges. These curves are probably some—

what inaccurate, however, because one of the requirements for the

validity of the simplified equation of equilibrium used 1is

that ne>> 1. A calculation for long cylinders made by Schwerin

and reported in reference 1 by Donnell suggests that all values

corresponding to the curves given in the present paper for n = 2

are slightly high.

In figure 2 the results of the present paper are compered with
those given by Donnell (reference 1) and Leggett (reference 4).
The present solution agrees quite closely with thet of Donnell .
except in the transition region between the horizontel pert and
the sloping straight-line part of the curves. In this region the
rresent results are appreciasbly less then those of Donnell
(meximum deviation about 17 percent) but are in close agreement with
Leggett's results, which are limited to low values of Z.

-In figure 3 the present solution and that of Donnell for the
critical shear stress of simply supported cylinders are compared
on the basis of egreement with test results obtained by a number
of investigetors. (See referencesl, 5, 6, and 7.) The curves
giving the present solution are appreciably closer to the test
points. More than 80 percent of the test points are within 20 percent
of the values corresponding to the theoretical curve for simply
supported cylinders given in the present paper, and ell points
are within 35 percent of values corresponding to the curve.

In figure 4 the present solution for critical shear—stress’
coefficients of long cylinders which buckle into two half waves
is given more fully than in figure 1 and is compared with test -
resulte of references 1 and 8. '
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The camputed values from whichk the theoreticéi curves presented
in this paper were drawn ere given in tables 1 and 2.

CONCLUDING REMARKS

A theoretical solution is given for the buckling strees of
thin-walled cylinders loaded in torsion. The resulte are applicable
to a wide range of cylinder dimensions from very short cylinders
of large radius to very long cylinders of small radius. The
theoretical results are found to be in somewhat better sgreement with
experimental resulte than previous theoretical work for the same
range of cylinder dimensions. .

Langley Memorial Aercnautical Leboratory
Natlonsl Advisory Committee Tfor Aeronautics
Langley Field, Va., Merch 20, 1947
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APPEIDIX.. -
THEQRETICAL SOLULTON

The critical shear strees at which buckling occurs in a
cylindrical shell may be cbtained by solving the equation of
equilibrium, - -

Equation of equilibrium.— The equaticn of equilibrium fer
a slightly buckled cylindrical shell under shear 1s (reference 3)

)-l» a?
Vl* V"'l‘ é—- + 2T ___‘W_ = 0
Py ;-2 oxt Tart dx Ay ' @)

where x 18 the axial direction and y the circumferential
dirsction. The following figure shows the coordinate system
uged in the analysis:

————

i ] ' it U e,

s

yo—

Rt ¥ iRt

UPL ST Qi
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Dividing through equation (1) by D gives

oy o 1222 oy N o n® P 5

where the dimensionless parameters Z eand kg are defined by

and

The equation of equilibrium may be represented'by
Q=0 , (3)

wvhere Q 18 defined by

Q =9k 1272 g-4 Mt 2k a2 o°

+ ———
T axt I2 3¢ 3y

Method of solution.— The equation of equilibrium may be solved

by using the Gelerkin method as outlined in reference 9. In
applying this method, equation (3) is solved by expressing w in
terms of an arbitrary number of functions (Vg, Vi, . . . V4, Wo,
Wi, . . .5 W3) that need not satisfy the equation but do satisfy
the boundary conditions on w; thus let .

,-- p | )
W= ng_amvm + > byWy : (&)

m=0 m=0
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The coefficlent ap and by are then determined by the equations

~r

1 23 1L B
f V,Qv dx dy = 0
(5)

wr

22 0L _
J WnQw dx 4y = O
o VUo '

where :
n:O,l,Q,.-.;J

The solutions given in the present peper satisfy the following
conditions at the ends of the cylinder: .

For cylinders of short and medium length with simply supported
¥
edges w.= 5;% =v =0 and u 1is unrestrained. For cylinders of

short and medium length with clamped edges w = gg =u=0 and Vv is
unreslrained. For long cylinders w = 0. (Sse references 2 and 3.)

Solution for Cylinders of Short and Medium Length

Simply suppqrted“edges.— Aﬂdeflection function for simply
supported edges may be taken as the infinite serises

" we=ein T\ ap sin X4 cos I 5;- sin ZEX - (6)
o) memEEeced) hmenEE
N e =1

where A 18 the half weve length of the buckles in the cir—
cunferential direction. Equation (6) is equivalent to equation (4)
1f _
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/ (1)
n nax
| Wn=COB—i‘LSinT
Substitution of” expressions (6) and (7) into equations (5) end
integration over the.limits indiceted give
o ol . g ' o
o 4 2,2 R A S
. w2 + 62)2 | f  w-m
l
f(B)
- T as ™ ~
2.k .
| e IR LB B
7| AHn2 4 g2)2 |0 L n®-nf
- . ot m=1 3

where -

-L
.B A

n=1, 2, 3,

end m*n is odd. Eguations (8) have a sclution if the following

determinant venishes:
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al 52< 83 ah 5.5 8.6 .o; bl b2 b3 bh bs b6 PR
=l "lM 0 O ;cn 2 0 'L 0 i ¢ s
] e e 0 0 ° 5 T 35
=2 0 as e '2' - 0 lg 0 .o
’ %’ME 9 °0 e ° (6) > 12 & 2
n=3] 0 © E3;M3 o 0.0 .. 0 -2 o ¥ o £ ..
n=l} 0 0 0 k-l-Ml# 0 e ‘% O 'l,{g 0 ggg' 0 ¢ e
8
= 1 10 20 20
0 L) - — - L]
51 0 0 0 k—SM5 0 0 = 0 5 0 o
n6| .0 0 0 o0 o g -355- 0 % o -&2 o ...
. ) L] e . - [ [ ] . . . . ) (9)
. = --2- -—h— -..6.. l
n 0 3 O 15 0 35 .o Ele 0 0 0 0 M 0 aesn 7
- 2 . _1o 1
n2| £ 0 - 0-F o .. o g 0 0 0 0 .
n=3| 0 g 0 -172 0 % .. 0 O Elqu 0 0 0 ...
RS 12 .20 1
n-l" 15 lo 7 22 9 Z s e 0 0 0 I(';M)* l 0 0 [N
= 19 20 -
n 7 6() 21 0 9 0 %i’ e 0 0 0 0 ﬁs 0 v e
5| & 2 30 1
n=6 % © 35 0 4§ ©0 .. 0O 0 0 0 O gHMg...
where ' _ -
: 2. 4
Mn.____gt_‘ (n2+ E2)24‘_ 122n _ ‘
88 | bR+ )

By rearranging rows and columns, the infinite determinant can be factored
into the product of two infinite subdeterminants which are eguivalent
to each other, The critical stress may then be obtained from the
following equation: :

= SRR, e . i -
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n=1
=2
=3
n=4
5

6

ot
I
n
I

¢10)

(11)

The firset approximation, obtained from the second-order determinant,

ie given by
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The second epproximation, obtained from the third-order determinant,
is given by o

(12)

The third approximation, obtained from the fourth—order determinant,
is given by

.
3+ B -] (P« (5P (5« (3o
+'M1M2M3Mu =0 ' (13)

Each of these equations shows that for a selected valus of the
curvature perameter Z the critical buckling stress of a cylinder
depends on the wave length. Since a structure buckles &t the lowest
stress at which instability can occur, kg 1is minimized with respect
to the wave length by substituting velues of B into the eguetion
until the minimum value of kg can be cbtained from g plot of kg
egainst B, This procedure is permissible when B > %% » that 1s,

when the cylinder buckles into more than two circumferentiel waves.
For the limiting case of a cylinder buckling into two waves,

see the section of the present appendix entitled "Sclution for

a Lopg Cylinder" which follows.

Figure 5(a) shows the convergence of the determinant for cylinders
with eimply aupported edges.

Clamped edges.— A procedure gimilar to that used for cylinders
with simply supported edges -may be followed for cylinders with
clemped edges. The deflection function used is the following
gcries:

(o]
= pin &L WX _ o {BF 2)MX
_v ain n }~ 8 | COB ~cos T
=0 - )
m— i .
oon 5D v foon B - on QTEB] (
m=0 ‘
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13

Each term tf this serdes satisfies the condition on w &t the edges.
The functions Vn end Wp are uow derined es follows:

Vp = sin Z¥

bif
Wn = CO8 11

vhere

L

cos P—;-i!: - co8 .(_n_*'i_e_)ﬂ

-

nnx

COB === = COB
L

§n + 2):0;
L

4 )

(15)

n=0, 1, 2_‘ c.io

When the same orersticns as those carried out for the case
of simply supported edges are performed, the following simultaneous

equations result:

For n = 0,
fos) r
‘ {m + 2)2
m=1,3,5 Com .14- . (mn + 2)
For n=1,
oc
~_ 2 2
al(Ml + M3) - a3M3 + kg 2- bm[: 2111 - 2m
_ n=0,3, } ne —1 me-9
S N L ¢ ) L B
" (m+é)2—1 (m+2)2—9
For n=2, 3, &4 ...,
o]
m2
an(Mn + Mpy2) - an-oMp = an+oMn+2 + kss_ bm[me ;é'
m=0
- me (m + 2)2 + (m + 2)2
- (n+22 (m+22-0° (m+2)2-~(n+2)?2

=0
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where mt n 1is odd, /

For n =0,

bo(2Mg+ Mp) — b My ~ Ky z -

For n=1, -

(2]
o { 5 >
_ 2)°
b1(M] + M3) —baM3 -k N on | - - = fnr
3 3"3 émé'u Lﬁ_l -9 (m+2)°-1
St Ak ]
. ‘
+'(m+2 \!'=O
(x‘n+2)2--9~
For n=2:3:)"’:"':
L 2=- 2 2
_ : _ m
b (M + ) = bpeoM, = b f‘M-FQ*'ks'\'am = - -
n{Mn + Mpyo n—¥n = Pn+2tn r{":o' @ -n2 m2-(n+2)2

= _(m+ 2)° + (m + 2)°
(m+2)2-n2 (m+2)2 - (n+2)°

-l

wvhere mtn is odd =nd

—

- _zr_ o) 2)2 4 1272nk
My = gp | (P4 P9 Y

L —

The infinite determinant formed by these equations can be rearranged
so ee to factor into the product of two determinants which are
equivalent to eech other. The vanishing of cne of these determinants
leads to the following equation (limited for convenience to the
gixth order):
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ol L -4 & -3
n=0| g=(2Mo+M) 1% Ko 2 105 0 315
N o3 _a 2

n=l 5 ) 105 k3 35 °
2 -2 _322 Ly e _ 1376
= kg 2 o5 B2 S5 kg% T 155
| o8 -1 2 1 _ e _

n=3 105 B3 315 moa™) T g5 ke
=4 0 2 - ..J_-.M ,41_60 1 %Q
? 35 kg * g3 L) e
5| - 32 -6 _ 1 © ghho 1
TS ° 1155 o5 1By Egst)

The first approximation, obtained from the second—order
determinant, 1s given by

2
2 =<.§.g (24, + Mp) (M) + Ms3)

15

=0 (17)

(18)

The second approximation, obtained from the third-order determinant,

is given by

2.
kg© =

(M + M3) [(EMD + Mp) (Mo + My) - MQQ_J

32
15

_ 64 35 352
) (Mg + M) 15 iFgM 105>2 (2M0 + MQ)

(19)

The third aspproximation, obtained from the fourth-order determinant,

is given by .
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Solution for e Long Cylinder

A long slender cylindsr ( zZ >10 *:b%) will buckle into two

r

vaveg in the circumferential direction, JIf, in the previous

capes of cylipders with simply supported or clemped edges, the
‘half wave length in the circumferential direction .A 1is taken

as nr/?, it ie possible to find the criticel stress of a long
slender cylinder with the ccrresponding edge conditions. This
method of solution is leborious, however, because determinants of
high order must be employecd to obtain solutions of reascnable
accuracy. The lator is greatly reduced by the use of the following
deflection function:

W= 8y < cos (P—%’E + -21-_1>- coslr-(-p—"'ig)—“Z + ?r).[‘, (21)

where p + 1 1s the phese difference of the circumferentlal waves
at the two ends of the cylinder measured in quarter—revolutions.
This equation satisfles the single boundary condition w = O.
_ With this deflection function, the fupctions V and W eall
' vanish except

] . VL = s (2%; R _2.1)_ cos Lmiia)ﬂ . 21] (22)
r r

Use of equatione (5), (21), and (22) and the relation 2\ = nr
results in the following equation:

ky = —t !' h ]2 127°p"
gk(p + 1) | Lo s n [pe _4_(
i . \
(p + 2)2 + ;:,_2(%)2]2 12225 + 2) (23)

F=ON)
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This equation may be written

.

; - - ¢ + " 1272(p +'2)h
Lo " ryl-u2 o [?p +2)% 4 3L‘.;_JQL__.] 2

_’(2 rl/l - p2‘

(2)

For glven values of 2 and %-/1 - ue, p 'is varied until a
minimim value of X, 1s obtained from & plot of p and corresponding
values of kg. The critical stress of & long slender cylinder 1is

very insensitive to edge restraint; therefore, the solution applies
with sufficient accuracy to cylinders with either simply supported

or clemped edges. The sheer—stress coefficient for long slender
cylindsrs is plotted ageinst the curvature parameter in figure 4,

and perte of these curves also appear in figure 1.

)]
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TABLE 1

THECRETICAL SHEAR-STRESS COEFFICIENTS AND WAVE LENGTHS

OF BUCKLES FOR SHORT—~ AND MEDIUM~LENGTH CYLINDERS

20

iiTFirst approximation

Second approximétion

Third approximation

kg B kB B kg B
Cylinders with simply supported edges
0 5.60 | 0.770 5.3% | 0.790 S
1 5.69 .805 5.42 360 5.41 0.865
5 6.68 1.00 6.22 1.015 |—=ce--dee—e—w-
10 8.36 1.2% 7.55 1.265 7.545( 1.27
30 14.93 1.82 12.69 1.8 |- emmdem = -
100 34.09 2.74 27.86 29l |- -
300 76.80 3.86 62.47 4.18 61.47 4.32
1,000 | 189.5 5.40 153.0 5.95 ———m e - = - -
10,000 | 1072 10.0 871.2 |1l.2 851.9 | 11.8
100,000 | 6050 17.9 4920 20.1 L4800 23.0
Cylinders with clemped edges
0 9.55 1.175 9.31 1.205 9.09 1.205
1 9.57 1.18 G.32 1.2, | mm e - =
5 9.90 1.23 9.62 - A B s e
10 10.79 1.35 10.42 1.38 10.19 1.38
30 16.13 1.89 14,99 19T |ew=mmmrmm - -
100 35.40 2.95 30.68 3.14 30.65 3.12
1,000 | 206.3 6.12 167.5 6.70 165.7 7.00
10,000 | 6860 20.35 5449 23.2 5310 24.8

NATTONAL ADVISORY

COMMITTEE FQOR AERONAUTICS
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TABLE 2

THECRETICAL SHEAR-STRESS COEFFICIENTS
FOR IONG CYLINDERS

_ 2 : .
%Vl M | z X,
4 x 103 428
3 x 104 2,450
20 :
107 7,780
106 7€,500
N .
™ 2.5 x 10% 1,680
105 5,380
50 £ 6
10 47,900
L w00 476,000
- ,
10° 4,800
100 § 106 35,200
207 334,500

NATTONAT, ADVISORY
COMMITTEE FOR AERONAUTICS

21-
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Figure 2.- Comparison of theoretical curves for critical stress of
thin-walled cylinders in torsion.
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Figure 5.- Successive approximations of critical shear-stress
coefficients for thin-walled cylinders in torsion.
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ABSTRACT:
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stress coefficient for simpie supported cylinders is 0.85 times curvature
parameter to the 3/4 power, and for cylinders with ciamped edges is 0.93,
Resuits are presented in terms of simple formulas and curves which cover
a wide range of dimensions., Theoretical results agree with experimental
results.
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